Basic research into brain neuron replacement! Could be translated to psychiatric disorders within a few years!
Embryonic neural stem cells transplanted into damaged areas of the visual cortex of adult mice were able to differentiate into pyramidal cells — forming normal synaptic connections, responding to visual stimuli, and integrating into neural networks — researchers at LMU Munich, the Max Planck Institute for Neurobiology in Martinsried and the Helmholtz Zentrum München have demonstrated.
The adult human brain has very little ability to compensate for nerve-cell loss, so biomedical researchers and clinicians are exploring the possibility of using transplanted nerve cells to replace neurons that have been irreparably damaged as a result of trauma or disease, leading to a lifelong neurological deficit.
Previous studies have suggested there is potential to remedy at least some of the clinical symptoms resulting from acquired brain disease through the transplantation of fetal nerve cells into damaged neuronal networks. However, it has not been clear whether transplanted intact neurons could be sufficiently integrated to result in restored function of the damaged network.
Related Reading:
Stem cells from schizophrenics produce fewer neurons
Stem cells obtained from patients with schizophrenia carry a genetic mutation that alters the ratio of the different type of nerve cells they produce, according to a new study by researchers in Japan. The findings, published today in the journal Translational Psychiatry, suggest that abnormal neural differentiation may contribute to the disease, such that fewer neurons and more non-neuronal cells are generated during the earliest stages of brain development.
Read the full story here:
and
Schizophrenic stem cells do not differentiate properly into neurons
Researchers at the RIKEN Brain Science Institute have used human-induced pluripotent stem cells (hiPSCs) to identify a characteristic of abnormal brain development in schizophrenia. Published in Translational Psychiatry, the study shows how deletion of a specific gene known to be associated with schizophrenia leads to abnormal differentiation of neurons and an imbalance between the number of neurons and astrocytes in the brain.
Read the full story: