The investigators hypothesize that NAC will inhibit KAT II, which will be reflected in the: 1) decreased peripheral conversion of kynurenine to KYNA; and 2) increased CBF, glutamate, and white matter fractional anisotropy (FA). In addition, the investigators hypothesize that the NAC effects on the neuroimaging measures will be related to improved performance on cognitive measures of attention, verbal and visual memory and working memory. These observed effects of NAC will be greater than those seen with placebo. The investigators further hypothesize that the NAC effects on ASL CBF, glutamate, and FA measures will be independent of NAC-induced changes in MRS glutathione, i.e., not due to the NAC oxidative stress mechanism, but, rather, will be correlated with NAC-induced reductions in the peripheral conversion of kynurenine to KYNA. Finally, the investigators hypothesize that the observed effects of NAC on CBF, glutamate, and FA will be related to baseline serum KMO activity and KYNA levels. The demonstration that NAC reverses the adverse impact of increased KYNA levels will importantly support the development of KAT II inhibitors for the enhancement of cognition in schizophrenia.
This is a trial, they don’t have results yet, in fact, they’re not expected to have results until 2024. But KYNA inhibition is one of the areas I’m particularly interested in.