Now, in a novel approach analyzing genetic influences on more than 4,000 people with schizophrenia, the research team has identified distinct gene clusters that contribute to eight different classes of schizophrenia.
"Genes don’t operate by themselves,” said C. Robert Cloninger, MD, PhD, one of the study’s senior investigators. “They function in concert much like an orchestra, and to understand how they’re working, you have to know not just who the members of the orchestra are but how they interact.”
In some patients with hallucinations or delusions, for example, the researchers matched distinct genetic features to patients’ symptoms, demonstrating that specific genetic variations interacted to create a 95 percent certainty of schizophrenia.
“What we’ve done here, after a decade of frustration in the field of psychiatric genetics, is identify the way genes interact with each other, how the ‘orchestra’ is either harmonious and leads to health, or disorganized in ways that lead to distinct classes of schizophrenia,” Cloninger said.
Although individual genes have only weak and inconsistent associations with schizophrenia, groups of interacting gene clusters create an extremely high and consistent risk of illness, on the order of 70 to 100 percent. That makes it almost impossible for people with those genetic variations to avoid the condition. In all, the researchers identified 42 clusters of genetic variations that dramatically increased the risk of schizophrenia.
My maestro is trying to screw me over. I need a better orchestra.